IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL, MTT-29, NO. 7, JULY 1981

type of junction. It is further demonstrated that the Wu
and Rosenbaum tracking circulator belongs to this type of
device. The agreement between the closed form expression
for the loaded Q-factor of the junction and a numerical
calculation are in excellent agreement.
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Propagation Constant Below Cutoff
Frequency in a Circular Waveguide with
Conducting Medium

TAKEO ABE, MEMBER, IEEE, AND YOSHIO YAMAGUCHI

Abstract— Exact and approximate propagation characteristics of normal
modes in the cutoff region of a circular waveguide surrounded by a medium
of finite conductivity are discussed. An exact solution is obtained by
numerical analysis, and an approximate one is derived by expanding the
characteristic equation considering the finite conductivity of the cylinder
wall. The computed values are compared with experimental ones. It is
shown that the attenuation of TM; mode at frequencies that are much
lower than the cutoff frequency is constant, i.e., independent of frequency
and the material constants of the external medium, and this mode is the
most suitable one for realizing a precision circular piston attenuator.

I. INTRODUCTION

T PRESENT, the dominant HE|; mode is used for

circular piston attenuators operating below cutoff
frequency. An approximate propagation theory [1], [2], has
been derived for these attenuators under the assumption
that the conductivity of the cylinder wall is infinite. The
attenuation of the HE,, mode, by this theory, should be
constant at frequencies that are much lower than the cutoff
frequency. Experimental attenuation values, however, vary
with frequency. This phenomenon seems to be caused by
the finite conductivity of the guide wall. A correction to the
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attenuation of the HE;; mode has been reported by Brown
[3].

Obviously, if a mode could be found that is independent
of frequency and conductivity, an ideal attenuator could be
realized based on this mode. For these reasons, we investi-
gated several modes of circular waveguide, taking into
consideration the finite conductivity of the guide wall.

This paper reports the propagation characteristics of
normal modes in the cutoff region of a circular waveguide
surrounded by a medium of finite conductivity. Exact and
approximate propagation constants are derived, experi-
mental values are presented, the distribution of E, in the
radial direction is discussed, and the ideal mode for a
precision circular piston attenuator is pointed out.

II. CHARACTERISTIC EQUATION

A hollow circular cylinder of radius ¢ and of infinite
length is surrounded by a dissipative medium as shown in
Fig. 1. No restriction is imposed on the conductivity of the
external medium. The normal modes in this cylinder are of
four types; circularly symmetric TE,,,, TM,,,, and hybrid
HE,,, EH,, modes which reduce to TE,,, TM,,,, when
the conductivity of the external medium becomes infinite.
These modes are assumed to have time and z variation of
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Fig. 1. Geometry of a circular waveguide and circular coordinate system

(p: ¥, 2).

the form e/(“~%2) where h is the propagation constant.
The propagation constants of normal modes in this cylin-
der must satisfy the characteristic equation which is given
by Stratton [4]

Jo(w) — Hy(o) \[kM(u)  kZH(v)
w,(u) oH(v) ]\ w,(u) oH(v)
1 1)
— 272 _1
—rh (;5 02) S
where
u=\k}—h*a  v=\ykZ—h%
kP =weopy kI =wiepy —jwpo
h=B—ju
a radius,
® angular frequency,
€ permittivity,
Ko permeability,
o conductivity,
B phase constant,
o attenuation constant,

€, =€¢/¢, relative dielectric constant,
J(u) Bessel function of order #,
H, (v) Hankel function of the second kind of order ».

Primes denote differentiation with respect to the indicated
argument throughout the paper.

It is difficult to obtain the exact solution of the propaga-
tion constant from (1) analytically, but it can be done by
numerical analysis [5], [6]. :

II1.

When the conductivity of the external medium is in
finite, the propagation. constant is determined by the
boundary condition that the electric field vanishes at the
wall. It is well known that in this case the propagation
constant in the cutoff region becomes purely 1mag1nary
and is given by

h=—ja=—jQa/\ )J1—-(A./A)

where A, is cutoff wavelength and A is wavelength of free
space. But this propagation constant seems invalid for
finite conductivity and for frequencies well below the cutoff
frequency, because experimental attenuation values vary as
the frequency decreases. Therefore, in order to find better
approximate values for the propagation constant consider-
ing the effect of finite conductivity, we assume that, first,
the conductivity is large but finite (i.e., we<o), and sec-

APPROXIMATE SOLUTION
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ond, the radius a is greater than the skin depth & (8 <a).
The argument v and the ratio of Hankel functions can
then be written in the following form:

v=k,a=|—jopo ag(l—j)a/(‘i
H/(v) _n H, (v) n

o) ot Ho) = (2)

Substituting (2) into (1), and neglecting terms of order
lower than O(v) 2, we get

uJ (u)

The propagation constant is seen to depend on the
material constants of the external medium. We will ex-
amine the propagation characteristics of the HE and EH
modes, and their dependence on the material constants.

+ nzhz%.

A. HE,, Mode

When the conductivity of the external medium is in-
finite, the propagation constant is determined by the root

U,, of

- Ja(uy,)=0. 4)
For the case of finite conductivity, the root can be ex-
pressed as

=u,, +Au (5)
where Au is a perturbation term. Taylor expansion of the
Bessel function around the root u,,,, leads to

Jo(W) =Tty + D) =T, ) Au

n2
—E( - —I)Jn(unm)Au

nm

J(w)=J(u,,). (6)

Substituting (6) into (3‘) and neglecting terms of order
higher than O(Au)?, Au is given by

nz(k,-za2 -—u,z,m) +ul,
(n® =2, J(—jtty0)

where | k;|>|k,| is used.
Then the following approximate propagation constant
can be derived:

W =k (ud,

Au=

™

+2u,,,Au)/a* (8)

which for the cutoff region becomes

& =A(1+C/2) (9)
Beonm=—A4C/2 (10)
and for the propagation region is
@y =(BC/2)(1—C/2)=BC/2 (11)
Byum =B(1+C/2) (12)

where

A=2af, Veolho 1_(f/fnm)2
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B:2ﬂf;1m €olko (f/f;lm) =1

1_( f )2"_2
S fnm n2—u,2,m

T8 ([

and f,,, is the cutoff frequency. The propagation constant
for the TE,, mode is found from these equations by
setting n=0.

For the dominant HE,; mode, which is presently used
for piston attenuators, the following propagation constant
in the cutoff region is found from (9) and (10):

i,1+(f/f11)2/2~391

15.99 r\V
Aen =", 1—(—') [1~
a /i 20 1=(f/f)
15.99 8 '
=1 (1—55) (dB /m) (13)
1.842 & 1+(f/f11)'/2391
B = . %4 - / - (rad/m). (14)
V1=(f/fin)
B. EH,, Mode
The EH,,, mode is characterized by the root u,,,, of
T (tt) =0. (15)

In a similar manner as before, the propagation constant
becomes for the cutoff region
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g = 1()4 S/m

o =A(1+D/2)

(16)

=—(A4D/2)(1-D/2) (17)
and for the propagatlon reglon
a, m;(BD/Z)(l—D/2)gBD/2

 Bonm =B(1+D/2)

cnm

(18)
(19)
where
8 ([/ha)
@ (f/fm) =1

When putting #=0 in these equations, they correspond
to the TM; modes. From this, the propagation constant
for the lowest order TM,, mode in the cutoff region
becomes

209/ [ 5 () ]
fO‘ 2a 1_(f/f01)

(dB/m) (20)

0.9

=22 (r<fy)  [aB/m] @)
g = 2405 (8/a)(f/fo)” [1+—3— (f/f)’ }
) 21—/ ) 2a 1—(f/fu)

(rad/m). (22)

Equations (11), (12), (18), (19), derived for the propaga-

tion region, are identical to those obtained by a perturba-
tion method well known in waveguide theory [7].
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1V. NuMericaAL RESULTS

Exact propagation constants can be obtained by solving
(1) numerically. Equation (1) can be written in the form

F(u)=0. (23)

The algorithm used for solving (23) is based on Newton’s
method. The convergence conditions imposed on the rela-
tive error were 107° in magnitude, and 1073 on - the
imaginary part.

As a numerical example, the attenuation for the lowest
order modes HE,,, EH,|, TE;, and TMy,, and a compari-
son between exact and approximate solutions are shown in
Fig. 2 as a function of the normalized circumference ka
and for a conductivity of 10* S/m. It is found that the
approximate solutions are in good agreement with the
exact ones.

Fig. 3 shows how the attenuation depends on the con-
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TABLE1
FREQUENCY CHARACTERISTICS OF ATTENUATION (TM,; MODE)
ATTENUATION (dB) aa
O;S/m) €r=10 Er=1
10° 10" 107 10° 10* 107
£ (MHz) exact app. exact  app. exact  app. exact  app. exact app. exact app.

6000 | 11.6495 6.0833 | 11.4221 11.4222 [11.4744 11.4744 | 9.1688 6.0833 [ 11.4211 11,4222 | 11.4744 11.4744
2000 | 19.5313 19.4678 | 20,0556 20.0556 | 20.0613 20.0613 | 19.0546 19.4678 | 20,0556 20.0556 | 20.0613 20.0613
1000 | 20.2860 20.4809 | 20.6825 20.6825 | 20.6844 20.6844 | 20,2094 20.4809 | 20,6825 20,6825 | 20.6844 20,6844
600 | 20.5482 20.7210 | 20.8141 20.8141 | 20.8150 20.8150 | 20.5353 20,7210 { 20,8141 20.8141 | 20.8150 20.8150
200 | 20,7541 20.8619 | 20,8798 20.8798 | 20.8799 20.8799 | 20.7881 20.8619 | 20.8798 20.8798 | 20.8799 20.8799
100 }20.8399 20.8797 | 20,8860 20.8860 | 20.8860 20,8860 | 20.8402 20.8797 | 20,8860 20,8860 | 20.8860 20,8860
60 |[20.8597 20.8844 | 20.8873 20.8873 | 20.8873 20.8873 | 20.8599 20.8844 | 20.8873 20,8873 | 20,8873 20.8873
20 (20,8788 20.8874 | 20.8880 20.8880 | 20.8880 20.8880 | 20.8788 20.8874 | 20,8880 20.8880 | 20.8880 20,8880
10 |20.8835 20.8878 | 20,8880 20.8880 | 20.8880 20.8880 | 20.8835 20.8878 { 20.8880 20.8880 | 20.8880 20.8880

6 |20.8853 20.8880 | 20.8880 20.8880 | 20.8880 20.8880 | 20.8853 20.8880 { 20.8880 20.8880 | 20.8880 20.8880

2 |20.8871 20.8880 | 20.8880 20.8880 | 20.8880 20,8880 | 20.8871 20.8880 | 20.8880 20.8880 | 20.8880 20.8880

1 ]20.8876 20,8880 | 20.8880 20.8880 | 20.8880 20,8880 | 20.8876 20.8880 | 20.8880 20.8880 | 20,8880 20,8880
0.6 {20.8878 20,8880 | 20.8880 20,8880 | 20.8880 20.8880 | 20.8878 20.8880 | 20,8880 20,8880 | 20.8880 20,8880
0.2 |20.8880 20,8880 | 20,8880 20.88806 | 20.8880 20.8880 | 20.8880 20.8880 | 20.8880 20.8880 | 20.8880 20.8880

1
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Fig. 4. z-component of electric field in radial direction.

3 N 3
N i TMo1
1E N 1E D
E : Er:]
| i O (s/m)
03¢ Q3F exact
- - L -m=— approximate
= HEu 1 o=10" =
- Er =1
[0} - r 01k )
. O (s/m) C - 0=10
: exact : ,///
003} ——-- approxamate ook
001 N W B AT Y e et e il ' B
01 0.3 1 3 10 0'0(111 03 1 3 10
ka ka

Fig. 5. Dispersion relation of HE,; mode. Fig 6. Dispersion relation of TM; mode.
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Fig. 7. Measurement apparatus. (a) Block diagram. (b) Side view of the
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Fig. 8. Experimental and theoretical attenuation.
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ductivity for the HE,, mode. It is seen that the approxi-
mate solution in this case agrees well with the exact one in
the cutoff region when the conductivity is over 10> S/m.
But the attenuation varies with frequency, and an error
between exact and approximate solution appears as the
frequency becomes lower. The reason for this error is that
- the second assumption a>>§ is not satisfied anymore and a
skin effect occurs. A similar error occurs in the propaga-
tion region when the conductivity is less than 10* S/m.
The first assumption o> we is violated in this case.

It should be noted in Table I that the attenuation of the
TM,, mode is constant, i.e., independent of conductivity
and frequency. This phenomenon can beg explained by
observing that the ( f/f,;)* term in the approximate equa-
tion (20) is superior to the 8 /a term. The effect can also be
explained phenomenologically from the exact solution, be-
cause it is seen that the z-component of the electric field,
shown as a function of p/a in Fig. 4, does not change as a
function of ¢, and o and E, =0 for p=a.

Phase constants of the HE,, and TM, modes, as a
numerical example, are shown in Figs. 5 and 6. The

approximate phase constants in the cutoff region do not
agree with the exact ones for small conductivities less than
107 S/m. The phase constant, however, does not seem to
have a significant meaning in the cutoff region. -

V. EXPERIMENTAL VALUES

In order to confirm the theoretical results, we measured
the attenuation of the HE,, and TM;, modes in the cutoff
region. The measurement apparatus is shown in Fig. 7. We
used a mode filter to suppress the undesired modes and
used circular disks for the TM; mode and wires or coils
for the HE,, mode as the exciting and receiving antennas,
in order to get the desired mode.

The test attenuator used was a hollow pipe made of
brass with a conductivity of 1.666x107 S/m. The size of
the pipe was about 30 cm long with a radius of 15.99 mm.
As attenuation is a function of the length between the
exciting and the receiving antennas, we obtained the at-
tenuation of each mode by moving the receiving antenna
about 0-6 cm. ‘

Fig. 8 shows good agreement between experimental and
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theoretical values; the approximate values, incidentally,
coincide with the exact ones.

VL

It is shown that, first, approximate propagation con-
stants of circular waveguide modes agree well with exact
ones when the conductivity of the waveguide wall is large
(6> we) and the skin depth is smaller than the radius of
the cylinder; second, that the attenuation of the TM,,
mode is constant, i.e., independent of the material con-
stants of the external medium and frequencies that are
much lower than the cutoff frequency. The second result
turns out to make the TM;, mode the most suitable for
circular precision attenuators in the region where the at-
tenuation of the dominant HE,, mode varies with
frequency.

CONCLUSION
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Scattering of the TE,, and TM,, Modes on
Transverse Discontinuities in a Rod
Dielectric Waveguide— Application to the
Dielectric Resonators

PHILIPPE GELIN, SERGE TOUTAIN, PATRICK KENNIS, aAND JACQUES CITERNE

Abstract— Our purpose is to determine the resonance frequency to-
gether with the radiation quality factor of dielectric resonators. To do that,
the reflection and the scattering properties of the TEy; and TM,, modes,
incident on an abruptly ended dielectric rod, are analyzed. After the
building of the complete mode spectrum on each side of the discontinuity,
the continuity relations in the discontinuity plane associated with the
orthogonality properties lead to a coupled integral equation system. That
one is solved by means of an iterative procedure, providing all the char-
acteristics of the discontinuity (reflection or coupling coefficients, radiation
losses). Then, these solutions are used to determine the resonant frequency
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and the radiation quality factor of cylindrical resonators which are consid-
ered as waveguide lengths between two interacting discontinuities.

I. INTRODUCTION

N THE LAST FEW YEARS, the availability of dielec-

tric materials with high relative permittivity has given a
great impact on the use of dielectric resonators in micro-
wave integrated circuits (passband filters, stabilized solid-
state sources).

The concept of dielectric resonator has been proposed in
[1] as far back as 1939. The first analysis of the magnetic
dipole resonance of cylindrical dielectric resonators of very
high permittivity was treated under the assumption that all



