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type of junction. It is further demonstrated that the Wu

and Rosenbaum tracking circulator belongs to this type of

device. The agreement between the closed form expression
[4]

for the loaded Q-factor of the junction and a numerical [5]

calculation are in excellent agreement.
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Propagation Constant Below Cutoff
Frequency in a Circular Waveguide with

Conducting Medium

TAKEO ABE, MEMBER, IEEE, AND YOSHIO YAMAGUCHI

A bstfact— Exact and approximate propagation characteristics of nommf

modes in the cutoff region of a circular wavegnide surrounded by a medium

of finite conductivity are discussed. An exact solution is obtained by

numerical analysis, and an approximate one is derived by expanding the

characteristic eqnation considering the finite conductivity of the cylinder

wall. The computed vafues are compared with expe~mental ones. It is

shown that the attenuation of TMOl mode at frequencies that are much

lower than the cutoff frequency is constant, i.e., indeperident of frequency

and the material constants of the external medium, &d this mode is the

most suitable one for realizing a precision circular piston attenuator.

I. INTRODUCTION

A T PRESENT, the dominant H131, mode is used for

circular piston attenuators operating below cutoff

frequency. An approximate propagation theory [1], [2], has

been derived for these attenuators under the assumption

that the conductivity of the cylinder wall is infinite. The

attenuation of the HE1 ~ mode, by this theory, should be

constant at frequencies that are much ~pwer than the cutoff

frequency. Experimental attenuation values, however, vary

with frequency. This phenomenon seems to be caused by

the finite conductivity of the guide wall. A correction to the
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attenuation of the HE,, mode has been reported by Brown

[3].

Obviously, if a mode could be found that is independent

of frequency and conductivity, an ideal attenuator could be

realized based on this mode. For these reasons, we investi-

gated several modes of circular waveguide, taking into

consideration the finite conductivity of the guide wall.

This paper reports the propagation characteristics of

normal modes in the cutoff region of a circular waveguide

surrounded by a medium of finite conductivity. Exact and

approximate propagation constants are derived, experi-

mental values are presented, the distribution of Ez in the

radial direction is discussed, and the ideal mode ‘for a

precision circular piston attenuator is pointed out.

II. CHARACTERISTIC EQUATION

A hollow circular cylinder of radius a and of infinite

length is surrounded by a dissipative medium as shown in

Fig. 1. No restriction is imposed on the conductivity of the

external medium. The normal modes in this cylinder are of

four types; circularly symmetric TEO~, TMO~, and hybrid

HEnm, EHnm modes which reduce to TE~~, TM~~ when

the conductivity of the external medium becomes infinite.

These modes are assumed to have time and z variation of
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Fig. 1. Geometry of a circular waveguide and circular coordinate system

(P>!b, z).

the form e~ctiz-fi’), where h is the propagation constant.

The propagation constants of normal modes in this cylin-

der must satisfy the characteristic equation which is given

by Stratton [4]

(J;(u) H;(o)

)(

k:.l;(u) k;H;(0)

tin(u) – _ z.&(u) – oH.(v) )

‘“2’2(+-+)2“)
where

a radius,

w angular frequency,

c permittivity,

Po permeability,

conductivity y,

; phase constant,

a’ attenuation constant,

c, = ~/c. relative dielectric constant,

J.(u) Bessel function of order n,

H.(v) Hankel function of the second kind of order n.

Primes denote differentiation with respect to the indicated

argument throughout the paper.

It is difficult to obtain the exact solution of the propaga-

tion constant from (1) analytically, but it can be done by

numerical analysis [5], [6].

III. APPROXIMATE SOLUTION

When the conductivity of the external medium is in

finite, the propagation constant is determined by the

boundary condition that the electric field vanishes at the

wall. It is well known that in this case the propagation

constant in the cutoff region becomes purely imaginary

and is given by

h= –ja= –j(2m/AC)~l–(Ac/A)2

where A, is cutoff wavelength and A is wavelength of free

space. But this propagation constant seems invalid for

finite conductivity and for frequencies well below the cutoff

frequency, because experimental attenuation values vary as

the frequency decreases. Therefore, in order to find better

approximate values for the propagation constant consider-

ing the effect of finite conductivity, we assume that, first,

the conductivity is large but finite (i.e., ti~ <<u), and sec-

ond, the radius a is greater than the skin depth 8 (8 <a).
The argument o and the ratio of Hankel functions can

then be written in the following form:

H;(v) n + H.+I(v) _____

H.(v) ‘; H.(v) ‘V ‘=–]”
(2)

Substituting (2) into (l), and neglecting terms of order

lower than 0(v) ‘2, we get

The propagation constant is seen to depend on the

material constants of the external medium. We will ex-

amine the propagation characteristics of the HE and EH

modes, and their dependence on the material constants.

A. HEnm Mode

When the conductivity of the external medium is in-

finite, the propagation constant is determined by the root

u ni?l of

J;(unm)=O. (4)

For the case of finite conductivity, the root can be ex-

pressed as

u=unm+Au (5)

where Au is a perturbation term. Taylor expansion of the

Bessel function around the root zqm leads to

J;(U) =J;(Unm +AU)GJ:’(Unm)AU

()
2

~
— — – 1 Jn(unm)Au

:;.

J.(u) -J.(unm). (6)

Substituting (6) into (3) and neglecting terms of order

higher than 0( Au)2, Au is given by

n2(kfa2 —u~m )+u;m

‘u= (n’ -U#m)(-@nmv)
(7)

where Iki I>> Ikel is used.

Then the following approximate propagation constant

can be derived:

(‘2 ~k; - U;m +2u .~Au)/a2 (8)

which for the cutoff region becomes

a ~~~ -A(1 +C/2) (9)

/3CnmG –AC/2 (lo)
and for the propagation region is

,~~ G(BC/2)(1 - C/2) sBC/2a (11)

B,nm =B(l + c/2) (12)

where

A=2TLG{=
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rB=27rj&G ( f/~m) – 1

()
2

/-1 ~z

fim n2–u~m
r= –

a
(f/LJ2-l

and fn ~ is the cutoff frequency. The propagation constant
for the TEO~ mode is found from these equations by

setting n = O.

For the dominant HE,, mode, which is presently used

for piston attenuators, the following propagation constant

in the cutoff region is found from (9) and (10):

15.99

/T[

f’ ~_~,l+(f/fl, )’/2.391
ac,l= ~

1– K za l–(f/f*J2
I

()15.99 ~_ 8~_—
G

(dB/m)
a

(13)

1.842 8 I +( f\fll)2/2.391
#&l=-—

a 2a {m

(rad/m). (14)

B. EHnm Mode

The EHnm mode is characterized by the root U.n of

Jn(unm)=o. (15)

In a similar manner as before, the propagation constant

becomes for the cutoff region

a ,nm GA(l +D/2) (16)

i%nm = –(~~/2)(1 -~/2) (17)

and for the propagation region

.,nm R(BD/2)(1 -D/2) EBD/2 (18)

~,.~ -B(1 +D/2) (19)

where

D=! (f/Lm)’

a (f/L)2-l “

When putting n= O in these equations, they correspond

to the TMO1 modes. From this, the propagation constant

for the lowest order TMOI mode in the cutoff region

becomes

20.9

/m[

2

1– $
~_ ~ ( f/fol)2

ace, = y

2“ 1 –(f/fol)2 1

(dB/m) (20)

20.9~_— ( f<~,) [dB/mj (21)
a

2.405 (8/a)( f\fm )2
flcol = y “

[

8 ( f\fol )2

2{- 1+~ I–(f/fO, )’ 1
(rad/m). (22)

Equations (11), (12), (18), (19), derived for the propaga-

tion region, are identical to those obtained by a perturba-

tion method well known in waveguide theory [7].
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IV. NUMERICAL RESULTS

Exact propagation constants can be obtained by solving

(1) numerically. Equation (1) can be written in the form

F(r.4)=o. (23)

The algorithm used for solving (23) is based on Newton’s

method. The convergence conditions imposed on the rela-

tive error were 10’6 in magnitude, and 10’5 on the

imagina~ part.

As a numerical example, the attenuation for the lowest

order modes HE, ~, EH1,, TEO1, and TMO1, and a compari-

son between exact and approximate solutions are shown in

Fig. 2 as a function of the normalized circumference ka

and for a conductivity of 104 S/m. It is found that the

approximate solutions are in good agreement with the

exact ones.

Fig. 3 shows how the attenuation depends on the con-
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TABLE I
FREQUENCY CHARACTERISTICS OF ATTENUATION (TM., MODE)

ATTENUATION

u I

f (Mnz)

6000

2000

1000

600

200

100

60

20

10

6

2

1

0.6

0,2

loo

exact w.

11.6495 6.0833

19.5313 19.4678

20.2860 20.4809

20.5482 20.7210

20,7541 20.8619

20,8399 20.8797

20.8597 20.8844

20.8788 20.8874

20.8835 20.8078

20.8853 20.8880

20,8871 20.8880

20.8876 20,8880

20.8878 20.8880

20.8880 20.8880

er-10

lob
exact aPP .

11.4221 11.4222

20.0556 20.0556

20.6825 20.6825

20.8141 20.8141

20,8798 20,8798

20.8860 20.8860

20,8873 20.8873

20.8880 20.8880

20.8880 20.8880

20.8880 20.8880

20.8880 20.8880

20.8880 20.8880

20.8880 20,8880

20.8880 20,88813

~07

exact app.

L1.4744 11.4744

20.0613 20.0613

20.6844 20.6844

20.8150 20.8150

20.8799 20.8799

20.8860 20.8860

20.8873 20.8873

20.8880 20,8880

20.8880 20.8880

20,8880 20.8880

20,8880 20.8880

20.888i3 20.8880

20.8880 20.8880

20.8880 20.8880

(dB) aa

,no

exact aPP .

9.1688 6.0833

19.0546 19.4678

20.2094 20.4809

20.5353 20.7210

20.7881 20.8619

20.8402 20.8797

20.8599 20.8844

20.8788 20.8874

20.8835 20,8878

20.8853 20.8880

20.8871 20.8880

20.8876 20.8880

20.8878 20.8880

20.8880 20.8880

exact app .

11.4211 11.4222

20,0556 20.0556

20,6825 20.6825

20.8141 20.8141

20.8798 20.8798

20,8860 20,8860

20.8873 20.8873

20.8880 20.8880

20.8880 20.8880

20.8880 20.8880

20.8880 20.8880

20.8880 20.8880

20.8880 20,8880

20.8880 20,8880
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Fig. 8. Experimental and theoretical attenuation.

ductivity for the lLE1l mode. It is seen that the approxi-

mate solution in this case agrees well with the exact one in

the cutoff region when the conductivity is over 102 S/m.

But the attenuation varies with frequency, and an error

between exact and approximate solution appears as the

frequency becomes lower. The reason for this error is that

the second assumption a>> 8 is not satisfied anymore and a
skin effect occurs. A similar error occurs in the propaga-

tion region when the conductivity is less than 104 S/m.

The first assumption u>> uc is violated in this case.

It should be noted in Table I that the’ attenuation of the

TMO1 mode is constant, i.e., independent of conductivity

and frequency. This phenomenon can be%explained by

observing that the (~/&l )2 term in the approximate equa-

tion (20) is superior to the t3/a term. The effect can also be

explained phenomenologically from the exact solution, be-

cause it is seen that the z-component of the electric field,

shown as a function of p/a in Fig. 4, does not change as a

function of c, and u and E= sO for p= a.

Phase constants of the HE, ~‘ and TMOI modes, as a

numerical example, are shown in Figs. 5 and 6. The

approximate phase constants in the cutoff region do not

agree with the exact ones for small conductivities less than

107 S/m. The phase constant, however, does not seem to

have a significant meaning in the cutoff region.

V. EXPERIMENTAL VALUES

In order to confirm the theoretical results, we measured

the attenuation of the HE, ~ and TMO1 modes in the cutoff

region. The measurement apparatus is shown in Fig. 7. We

used a ‘mode filter to suppress the undesired modes and

used circular disks for the TMO1 mode and wires or coils

for the HE, ~ mode as the exciting and receiving antennas,

in order to get the desired mode.

The test attenuator used was a hollow pipe made of

brass with a conductivity of 1.666X 107 S/m. The size of

the pipe was about 30 cm long with a radius of 15.99 mm.

As attenuation is a function of the length between the

exciting and the receiving antennas, we obtained the at-

tenuation of each mode by moving the receiving antenna

about O–6 cm.

Fig. 8 shows good agreement between experimental and
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Scattering of the TEO1 and TMO1 Modes on
Transverse Discontinuities in a Rod

Dielectric Waveguide— Application to the
Dielectric Resonators

PHILIPPE GELIN, SERGE TOUTAIN, PATRICK KENNIS, AND JACQUES CITERNE

A bstract— Our purpose is to determine the resonance frequency to-

gether with the radiation quality factor of dielectric resonators. To do that,

the reflection and the scattering properties of the TEO1 and TMol modes,

incident on an abruptly ended dielectric rod, are analyzed. After the

building of the complete mode spectrum on each side of the discontinuity,

the continuity relations in the discontinuity plane associated with the

orthogonality properties lead to a coupled integraf equation system. That

one is solved by means of an iterative procedure, providing all the char-

acteristics of the discontinuity (reflection or coupling coefficients, radiation

losses). Then, these solutions are used to determine the resonant frequency
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and the radiation quality factor of cyfindricaf resonators which are consid-

ered as wavegoide lengths between two interacting dkcontinuities.

I. INTRODUCTION

I N THE LAST FEW YEARS, the availability of dielec-

tric materials with high relative permittivity has given a

great impact on the use of dielectric resonators in micro-

wave integrated circuits (passband filters, stabilized solid-

state sources).

The concept of dielectric resonator has been proposed in

[1] as far back as 1939. The first analysis of the magnetic

dipole resonance of cylindrical dielectric resonators of very

high permittivity was treated under the assumption that all


